#u=(arcsinx)^n => du=(n(arcsinx)^(n-1))/sqrt(1-x^2)dx#
#dv=dx => v=x#
#I_n=int (arcsinx)^ndx = x(arcsinx)^n - int x(n(arcsinx)^(n-1))/sqrt(1-x^2)dx#
#I_n=x(arcsinx)^n - n int (arcsinx)^(n-1) x/sqrt(1-x^2)dx#
#u=(arcsinx)^(n-1) => du=((n-1)(arcsinx)^(n-2))/sqrt(1-x^2)dx#
#dv= x/sqrt(1-x^2)dx => v= int x/sqrt(1-x^2)dx#
#t=1-x^2 => dt=-2xdx => xdx=-dt/2#
#v= int x/sqrt(1-x^2)dx = -1/2 int dt/sqrtt=-1/2sqrtt/(1/2)=-sqrt(1-x^2)#
#I_n=x(arcsinx)^n - n [ -sqrt(1-x^2)(arcsinx)^(n-1) - int (-sqrt(1-x^2)) ((n-1)(arcsinx)^(n-2))/sqrt(1-x^2)dx]#
#I_n=x(arcsinx)^n - n [ -sqrt(1-x^2)(arcsinx)^(n-1) + (n-1) int (arcsinx)^(n-2)dx ]#
#I_n=x(arcsinx)^n + n sqrt(1-x^2)(arcsinx)^(n-1) -n(n-1)I_(n-2)#
So, we have recurrent formula, we only have to find #I_1# and #I_2# and that's trivial.