How do you find the interval of convergence #Sigma n!(x-3)^n# from #n=[0,oo)#?
1 Answer
The interval of convergence is
Explanation:
The series
#L=lim_(nrarroo)abs(a_(n+1)/a_n)=lim_(nrarroo)abs(((n+1)!(x-3)^(n+1))/(n!(x-3)^n))#
Simplifying the factorial and the other part:
#L=lim_(nrarroo)abs(((n+1)n!)/(n!)*(x-3)^(n+1)/(x-3)^n)#
#L=lim_(nrarroo)abs((n+1)(x-3))#
The limit is only dependent on how
#L=abs(x-3)lim_(nrarroo)abs(n+1)#
We see that the limit approaches
Thus the interval of convergence is restricted to the single value