How do you find the inverse of #y = (log_2 x) +2#?

1 Answer
Jun 21, 2016

This process reflects the equation about #y=x#

#y=10^(log_10(2)(x-2)#

Explanation:

Using: #log_2(x) -> log_10(x)/log_10(2)#

#" "y=log_10(x)/log_10(2)+2#

#color(brown)("Subtract 2 from both sides")#

#" "y-2=log_10(x)/log_10(2)#

#color(brown)("Multiply both sides by "log_10(2))#
#color(white)(2/2)#

#" "log_10(2)(y-2)=log_10(x)#
#" "color(brown)(|ul(" ")|)#
#" "color(brown)(darr)#
#color(brown)(" Let "log_10(2)(y-2)" be "z)#

#log_10(x)=z " "vec("another way of writing this is")" " x=10^z#
#color(white)(2/2)#
#color(brown)("So by substitution for "z" we have:")#
#color(white)(2/2)#
#" "=>x=10^(log_10(2)(y-2)#

#color(brown)("Swap the letters "x" and "y" round and we have:")#
#color(white)(2/2)#

#" "color(blue)(y=10^(log_10(2)(x-2))#
#color(white)(2/2)#

Tony B