How do you find the limit as x approaches infinity of a more complex square root function?

#lim_"x->oo"# #sqrt(x^2-4x+3)-sqrt(x^2+2x)#

1 Answer
Oct 2, 2016

The initial form is indeterminate (#oo-oo#). One thing to try is writing it over #1# and 'rationalizing'. (Actually, we'll remove the square roots in the numerator.)

Explanation:

#((sqrt(x^2-4x+3)-sqrt(x^2+2x)))/1 * ((sqrt(x^2-4x+3)+sqrt(x^2+2x)))/((sqrt(x^2-4x+3)+sqrt(x^2+2x)))#

# = ((x^2-4x+3)-(x^2+2x))/(sqrt(x^2-4x+3)+sqrt(x^2+2x))#

# = (-6x+3)/(sqrt(x^2-4x+3)+sqrt(x^2+2x))#

For #x != 0#, we can factor #x^2# under the radicals,

# = (-6x+3)/(sqrt(x^2)sqrt(1-4/x+3/x^2)+sqrt(x^2)sqrt(1+2/x))#

Now, since #sqrt(x^2) = abs x# abd we are only interested in #x > 0# as #x rarroo#, we have

# = (-6x+3)/(xsqrt(1-4/x+3/x^2)+xsqrt(1+2/x))# (for #x > 0#)

Now factor out the #x#'a and reduce.

# = (cancel(x)(-6+3/x))/(cancel(x)(sqrt(1-4/x+3/x^2)+sqrt(1+2/x)))# (for #x > 0#).

Taking the limit as #xrarroo# gets us

#(-6+0)/(sqrt(1-0+0)+sqrt(1+0)) = (-6)/2 = -3#