How do you find the limit #lnx/sqrtx# as #x->oo#? Calculus Limits Determining Limits Algebraically 1 Answer Andrea S. · Steve M Jan 16, 2017 #lim_(x->oo) lnx/sqrt(x) = 0# Explanation: As we have: #lim_(x->oo) lnx = +oo# #lim_(x->oo) sqrt(x) = +oo# The limit: #lim_(x->oo) lnx/sqrt(x) = (+oo)/(+oo)# presents itself in the indeterminate form #oo/oo# and we can use l'Hospital's rule: #lim f(x)/g(x) = lim (f'(x))/(g'(x))# so: #lim_(x->oo) lnx/sqrt(x) = lim_(x->oo) (d/(dx)lnx)/(d/(dx)sqrtx) = lim_(x->oo) (1/x)/(1/(2sqrt(x))) = lim_(x->oo) (2sqrt(x))/x=lim_(x->oo) 2/sqrt(x) = 0# Answer link Related questions How do you find the limit #lim_(x->5)(x^2-6x+5)/(x^2-25)# ? How do you find the limit #lim_(x->3^+)|3-x|/(x^2-2x-3)# ? How do you find the limit #lim_(x->4)(x^3-64)/(x^2-8x+16)# ? How do you find the limit #lim_(x->2)(x^2+x-6)/(x-2)# ? How do you find the limit #lim_(x->-4)(x^2+5x+4)/(x^2+3x-4)# ? How do you find the limit #lim_(t->-3)(t^2-9)/(2t^2+7t+3)# ? How do you find the limit #lim_(h->0)((4+h)^2-16)/h# ? How do you find the limit #lim_(h->0)((2+h)^3-8)/h# ? How do you find the limit #lim_(x->9)(9-x)/(3-sqrt(x))# ? How do you find the limit #lim_(h->0)(sqrt(1+h)-1)/h# ? See all questions in Determining Limits Algebraically Impact of this question 1295 views around the world You can reuse this answer Creative Commons License