How do you find the limit of # [1/(3+X)]- (1/3) ÷ X# as x->0?
1 Answer
Oct 22, 2016
Assuming you meant:
#lim_(xrarr0)((1/(3+x)-1/3)-:x)=lim_(xrarr0)(1/(3+x)-1/3)/x#
Multiply the fraction by the inner denominators:
#=lim_(xrarr0)(1/(3+x)-1/3)/x*((3+x)(3))/((3+x)(3))=lim_(xrarr0)(3-(3+x))/(x(3+x)(3))#
#=lim_(xrarr0)(-x)/(3x(x+3))=lim_(xrarr0)(-1)/(3(x+3))#
Now we can evaluate the limit:
#=(-1)/(3(0+3))=-1/9#