How do you find the limit of #(-6x^4+x^2+1)/(2x^4-x) # as x approaches infinity? Calculus Limits Determining Limits Algebraically 1 Answer José F. Mar 23, 2016 Divide both polynoms by #x^4#. The answer is -3. Explanation: #lim_(x->oo)(-6x^4+x^2+1)/(2x^4-x)=lim_(x->oo)(-6x^4/x^4+x^2/x^4+1/x^4)/(2x^4/x^4-x/x^4)=lim_(x->oo)(-6+1/x^2+1/x^4)/(2-1/x^3)=(-6+0+0)/(2-0)=-3# Answer link Related questions How do you find the limit #lim_(x->5)(x^2-6x+5)/(x^2-25)# ? How do you find the limit #lim_(x->3^+)|3-x|/(x^2-2x-3)# ? How do you find the limit #lim_(x->4)(x^3-64)/(x^2-8x+16)# ? How do you find the limit #lim_(x->2)(x^2+x-6)/(x-2)# ? How do you find the limit #lim_(x->-4)(x^2+5x+4)/(x^2+3x-4)# ? How do you find the limit #lim_(t->-3)(t^2-9)/(2t^2+7t+3)# ? How do you find the limit #lim_(h->0)((4+h)^2-16)/h# ? How do you find the limit #lim_(h->0)((2+h)^3-8)/h# ? How do you find the limit #lim_(x->9)(9-x)/(3-sqrt(x))# ? How do you find the limit #lim_(h->0)(sqrt(1+h)-1)/h# ? See all questions in Determining Limits Algebraically Impact of this question 2357 views around the world You can reuse this answer Creative Commons License