How do you find the Limit of #ln(1+e^x)/(5x) # as x approaches infinity?
1 Answer
May 21, 2016
Explanation:
We can rewrite the argument of the natural logarithm function:
#lim_(xrarroo)ln(1+e^x)/(5x)=lim_(xrarroo)ln(e^x(e^-x+1))/(5x)#
Use the logarithm rule
#=lim_(xrarroo)(ln(e^x)+ln(e^-x+1))/(5x)=lim_(xrarroo)(x+ln(1/e^x+1))/(5x)#
Split the fraction:
#=lim_(xrarroo)(1/5+ln(1/e^x+1)/(5x))=1/5+lim_(xrarroo)ln(1/e^x+1)/(5x)#
Note that as
#=1/5+ln(1/e^oo+1)/(5*oo)=1/5+ln(1)/oo=1/5#
Recall that