How do you find the limit of #(sin(x)/3x) # as x approaches 0 using l'hospital's rule? Calculus Limits Determining Limits Algebraically 1 Answer Shura Mar 2, 2016 #lim_(x->0)(sin(x)/(3x)) = 1/3.# See explanation below. Explanation: #lim_(x->0)(sin(x)/(3x)) = "0/0"# so we can use Bernouilli L'Hôpital's rule. #lim_(x->0)(sin(x)/(3x)) = lim_(x->0)((sin(x)')/((3x)')) =lim_(x->0) cos(x)/3 = 1/3.# Answer link Related questions How do you find the limit #lim_(x->5)(x^2-6x+5)/(x^2-25)# ? How do you find the limit #lim_(x->3^+)|3-x|/(x^2-2x-3)# ? How do you find the limit #lim_(x->4)(x^3-64)/(x^2-8x+16)# ? How do you find the limit #lim_(x->2)(x^2+x-6)/(x-2)# ? How do you find the limit #lim_(x->-4)(x^2+5x+4)/(x^2+3x-4)# ? How do you find the limit #lim_(t->-3)(t^2-9)/(2t^2+7t+3)# ? How do you find the limit #lim_(h->0)((4+h)^2-16)/h# ? How do you find the limit #lim_(h->0)((2+h)^3-8)/h# ? How do you find the limit #lim_(x->9)(9-x)/(3-sqrt(x))# ? How do you find the limit #lim_(h->0)(sqrt(1+h)-1)/h# ? See all questions in Determining Limits Algebraically Impact of this question 6708 views around the world You can reuse this answer Creative Commons License