## Cowboy

How could the cowboy travel on friday, then sleep two days and then travel back home on friday.

If the horse was named Friday.

How could the cowboy travel on friday, then sleep two days and then travel back home on friday.

If the horse was named Friday.

Allan, Bertrand, and Cecil were caught stealing so the king sent them to the dungeon.
But the king decided to give them a chance.
He mad them stand in a line and put hats on their heads.
He told them that if they answer a riddle, they could go free.
Here is the riddle: "Each of you has a hat on your head. You do not know the color of the hat on your own head. If one of you can guess the color of the hat on your head, I will let you free. But before you answer you must keep standing in this line. You cannot turn around. Here are my only hints: there are only black and white hats. At least one hat is black. At least one hat is white."
Allan couldn't see any hats.
Bertrand could see Allan's hat but not his own.
Cecil could see Bertrand's hat and Allan's hat, but not his own.
After a minute nobody had solved the riddle. But then a short while later, one of them solved the riddle. Who was is and how did he know?

Bertrand knew the answer because Cecil didn't say anything after one minute. If Bertrand and Allan's hats were both the same color, then Cecil would know what color his hat was. But Cecil didn't know. So Bertrand knew that Allan's hat was a different color than his. Since Allan's hat was black, Betrand knew his hat was white.

How to measure exactly 4 gallon of water from 3 gallon and 5 gallon jars, given, you have unlimited water supply from a running tap.

Step 1. Fill 3 gallon jar with water. ( 5p – 0, 3p – 3)
Step 2. Pour all its water into 5 gallon jar. (5p – 3, 3p – 0)
Step 3. Fill 3 gallon jar again. ( 5p – 3, 3p – 3)
Step 4. Pour its water into 5 gallon jar untill it is full. Now you will have exactly 1 gallon water remaining in 3 gallon jar. (5p – 5, 3p – 1)
Step 5. Empty 5 gallon jar, pour 1 gallon water from 3 gallon jar into it. Now 5 gallon jar has exactly 1 gallon of water. (5p – 1, 3p – 0)
Step 6. Fill 3 gallon jar again and pour all its water into 5 gallon jar, thus 5 gallon jar will have exactly 4 gallon of water. (5p – 4, 3p – 0)

Create a number using only the digits 4,4,3,3,2,2,1 and 1.
So I can only be eight digits.
You have to make sure the ones are separated by one digit, the twos are separated by two digits the threes are separated with three digits and the fours are separated by four digits.

41312432.

Before Mt. Everest was discovered, what was the highest mountain in the world?

Mt. Everest; it just wasn’t discovered yet.

What has many keys but can't open any doors?

Piano.

You have been given the task of transporting 3,000 apples 1,000 miles from Appleland to Bananaville. Your truck can carry 1,000 apples at a time. Every time you travel a mile towards Bananaville you must pay a tax of 1 apple but you pay nothing when going in the other direction (towards Appleland). What is highest number of apples you can get to Bananaville?

833 apples.
Step one: First you want to make 3 trips of 1,000 apples 333 miles. You will be left with 2,001 apples and 667 miles to go.
Step two: Next you want to take 2 trips of 1,000 apples 500 miles. You will be left with 1,000 apples and 167 miles to go (you have to leave an apple behind).
Step three: Finally, you travel the last 167 miles with one load of 1,000 apples and are left with 833 apples in Bananaville.

You're standing in front of a room with one lightbulb inside of it. You cannot see if it is on or off. Outside the room, there are 3 switches in the off positions. You may turn the switches any way you want to. You stop turning the switches, enter the room and know which switch controls the lightbulb. How?

You turn 2 switches "on" and leave 1 switch "off" and wait about a minute. Then enter the room, but just before you enter, turn one switch from "on" to "off". Once in the room, feel the lightbulb - if it is warm, but off, it has to be the last switch you turned off. If it is on, it has to be the switch left on. If it is cold and is off, it has to be the switch you left in the off position.

You are somewhere on Earth. You walk due south 1 mile, then due east 1 mile, then due north 1 mile. When you finish this 3-mile walk, you are back exactly where you started.
It turns out there are an infinite number of different points on earth where you might be. Can you describe them all?
It's important to note that this set of points should contain both an infinite number of different latitudes, and an infinite number of different longitudes (though the same latitudes and longitudes can be repeated multiple times); if it doesn't, you haven't thought of all the points.

One of the points is the North Pole. If you go south one mile, and then east one mile, you're still exactly one mile south of the North Pole, so you'll be back where you started when you go north one mile.
To think of the next set of points, imagine the latitude slighty north of the South Pole, where the length of the longitudinal line around the Earth is exactly one mile (put another way, imagine the latitude slightly north of the South Pole where if you were to walk due east one mile, you would end up exactly where you started). Any point exactly one mile north of this latitude is another one of the points you could be at, because you would walk south one mile, then walk east a mile around and end up where you started the eastward walk, and then walk back north one mile to your starting point. So this adds an infinite number of other points we could be at. However, we have not yet met the requirement that our set of points has an infinite number of different latitudes.
To meet this requirement and see the rest of the points you might be at, we just generalize the previous set of points. Imagine the latitude slightly north of the South Pole that is 1/2 mile in distance. Also imagine the latitudes in this area that are 1/3 miles in distance, 1/4 miles in distance, 1/5 miles, 1/6 miles, and so on. If you are at any of these latitudes and you walk exactly one mile east, you will end up exactly where you started. Thus, any point that is one mile north of ANY of these latitudes is another one of the points you might have started at, since you'll walk one mile south, then one mile east and end up where you started your eastward walk, and finally, one mile north back to where you started.

What can you catch but not throw?

A cold.