How do you find the limit of # (sqrt(x^2+10x+1)-x)# as x approaches #oo#?
1 Answer
Explanation:
Let
Then we find:
#lim_(t->oo) (sqrt(t^2+c)-t)=lim_(t->oo) (sqrt(t^2+c)-t)#
#color(white)(lim_(t->oo) (sqrt(t^2+c)-t))=lim_(t->oo) ((sqrt(t^2+c)-t)(sqrt(t^2+c)+t))/(sqrt(t^2+c)+t)#
#color(white)(lim_(t->oo) (sqrt(t^2+c)-t))=lim_(t->oo) ((t^2+c)-t^2)/(sqrt(t^2+c)+t)#
#color(white)(lim_(t->oo) (sqrt(t^2+c)-t))=lim_(t->oo) c/(sqrt(t^2+c)+t)#
#color(white)(lim_(t->oo) (sqrt(t^2+c)-t))=0#
Note that
Let
Then:
#lim_(x->oo) (sqrt(x^2+10x+1)-x) = lim_(t->oo) (sqrt(t^2+c)-t+5)#
#color(white)(lim_(x->oo) (sqrt(x^2+10x+1)-x)) = lim_(t->oo) (sqrt(t^2+c)-t) + 5#
#color(white)(lim_(x->oo) (sqrt(x^2+10x+1)-x)) = 0 + 5#
#color(white)(lim_(x->oo) (sqrt(x^2+10x+1)-x)) = 5#