How do you find the limit of # (x^2 -sqrt x)/(sqrt x -1)# as x approaches 1?
1 Answer
Nov 6, 2016
Explanation:
Note that this is in the indeterminate form
#lim_(xrarr1)(x^2-sqrtx)/(sqrtx-1)#
Apply L'Hopital's:
#=lim_(xrarr1)(d/dx(x^2-sqrtx))/(d/dx(sqrtx-1))=lim_(xrarr1)(2x-1/(2sqrtx))/(1/(2sqrtx))#
Simplifying:
#=lim_(xrarr1)(2x-1/(2sqrtx))(2sqrtx)=lim_(xrarr1)(4x^(3/2)-1)#
Now evaluating the limit:
#=4(1)-1=3#