How do you find the limit of #(x ^ 3)(e ^ (-x ^ 2))# as x approaches infinity?

1 Answer
Oct 5, 2017

#lim_(x->oo) x^3e^(-x^2) = 0#

Explanation:

Write the limit as:

#lim_(x->oo) x^3e^(-x^2) = lim_(x->oo) x^3/e^(x^2)#

It is now in the indefinite form #oo/oo# and we can apply l'Hospital's rule:

#lim_(x->oo) x^3/e^(x^2) = lim_(x->oo) (d/dx x^3)/(d/dx e^(x^2)) = lim_(x->oo) (3x^2)/(2xe^(x^2)) = lim_(x->oo) (3x)/(2e^(x^2))#

and again:

# lim_(x->oo) (3x)/(2e^(x^2)) = lim_(x->oo) 3/(4xe^(x^2)) = 0#