#L = lim_(x to 0) x^(3 sin x)#
#ln L = lim_(x to 0) ln x^(3 sin x) = lim_(x to 0) 3 sin x ln x#
#= 3 lim_(x to 0) ln x / (csc x)# which is now #oo/oo# indeterminate so we can use LHopital's Rule
#= 3 lim_(x to 0) (1/ x) / (-csc x cot x)#
#= - 3 lim_(x to 0) (sin x tan x) / (x)# which is #0/0# indterminate so again LHopital
#= - 3 lim_(x to 0) (cos x tan x + sin x sec^2 x) / (1)#
#= - 3 lim_(x to 0) sin x + tan x sec x = 0#
so # lim_(x to 0) ln L = 0#
#implies lim_(x to 0) L = 1#