How do you find the limit of #x^4# as #x->2#? Calculus Limits Determining Limits Algebraically 1 Answer Steve M Oct 30, 2016 Thus, # lim_(x->2)x^4 = 16 # Explanation: Let #f(x)=x^4#, then #f(x)# represents a continuous function (It is a polynomial function) Hence, # lim_(x->a)f(x) = f(a) # Thus, # lim_(x->2)f(x) = f(2) = 2^4=16 # Answer link Related questions How do you find the limit #lim_(x->5)(x^2-6x+5)/(x^2-25)# ? How do you find the limit #lim_(x->3^+)|3-x|/(x^2-2x-3)# ? How do you find the limit #lim_(x->4)(x^3-64)/(x^2-8x+16)# ? How do you find the limit #lim_(x->2)(x^2+x-6)/(x-2)# ? How do you find the limit #lim_(x->-4)(x^2+5x+4)/(x^2+3x-4)# ? How do you find the limit #lim_(t->-3)(t^2-9)/(2t^2+7t+3)# ? How do you find the limit #lim_(h->0)((4+h)^2-16)/h# ? How do you find the limit #lim_(h->0)((2+h)^3-8)/h# ? How do you find the limit #lim_(x->9)(9-x)/(3-sqrt(x))# ? How do you find the limit #lim_(h->0)(sqrt(1+h)-1)/h# ? See all questions in Determining Limits Algebraically Impact of this question 823 views around the world You can reuse this answer Creative Commons License