How do you find the limit of #(x^n)/(n!)# as n approaches #oo#?
1 Answer
Explanation:
If
#=lim_(n->oo)|x|^M/(M!)*prod_(k=1)^(n-M)|x|/(M+k)#
# <= lim_(n->oo)|x|^M/(M!)*prod_(k=1)^(n-M)|x|/M#
#<=lim_(n->oo)|x|^M/(M!)*prod_(k=1)^(n-M)|x|/(2|x|)#
#=lim_(n->oo)|x|^M/(M!)*prod_(k=1)^(n-M)1/2#
#=|x|^M/(M!)*prod_(k=1)^oo1/2#
#=|x|^M/(M!)*0#
#=0#
Additionally, as
By the above, we have
Then, as