#lim_{x to 0} x^{sqrt x}#
#= lim_{x to 0} e^ln(x^{sqrt x})#
#= exp (lim_{x to 0} ln x^{sqrt x})#
#= exp (lim_{x to 0} sqrt x ln x)#
#= exp (lim_{x to 0} ln x/ (1/sqrt x))#
#lim_{x to 0} ln x/ (1/sqrt x) = oo/oo# ie indeterminate, so we can use L'Hopital
#= exp (lim_{x to 0} (1/x)/ (-1/2 x^(-3/2)))#
#= exp (lim_{x to 0} (-2 x^(3/2))/ (x ))#
#= exp (lim_{x to 0} -2 x^(1/2))#
#= e^0 = 1#