How do you find the Maclaurin Series for #f(x)=sin(x^4)#?

1 Answer
May 9, 2016

#x^4-x^12/(3!)+x^20/(5!)-...+(-1)^(n-1)((x^4)^(2n+1))/((2n+1)!)+...#

Explanation:

Let #u=x^4# Then, fx)=g(u)=sin u#

Maclaurin series for #g(u)=u-u^3/(3!)+u^5/(5!)-..=f(x#)

Reverting to function of x,

#f(x)=x^4-x^12/(3!)+x^20/(5!)-...+(-1)^(n-1)(x^4)^(2n=1)/((2n+1)!)+...#

Maclaurin series is valid for any #x in (-oo, oo)#. Here, the mapping is #xtox^4#, for a subset of #(-oo. oo)# ...