# How do you find the midpoint of (-3, 4) and (5, 4)?

Feb 21, 2016

$\textcolor{b l u e}{\text{Mid point "-> (x,y) = (1,4)". }}$Notice that as $y = 4$ is true for each of the given points, this is a plot of a line parallel to the x-axis. So the equation of the line is: y=4.

#### Explanation:

${x}_{\text{mid point}} \to \frac{1}{2}$the distance between the $x$ values added to the first $x$ value

${y}_{\text{mid point}} \to \frac{1}{2}$ the distance between the $y$ values added to the first $y$ value.

$\textcolor{b r o w n}{\text{Let } \left({x}_{1} , {y}_{1}\right) \to \left(- 3 , 4\right)}$

$\textcolor{b r o w n}{\text{Let } \left({x}_{2} , {y}_{2}\right) \to \left(5 , 4\right)}$
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("To determine "x_("mid point"))

x_("mid point") = x_1 + (x_2-x_1)/2" "=" "(-3)+(5-(-3))/2

color(blue)(x_("mid point") " "=" "1)

'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("To determine "y_("mid point"))

y_("mid point")" "=" "y_1+(y_2-y_1)/2" "=" "4+(4-4)/2

color(blue)(y_("mid point")" "=" "4
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Mid point $\to \left(x , y\right) = \left(1 , 4\right)$