How do you find the nth derivative of the function #f(x)=1/x#?
1 Answer
Dec 21, 2016
Explanation:
When
# { (n=1,=>f^((n))=f'(x),=-1x^(-2)), (n=2,=>f^((n))=f''(x),=+1*2x^(-3)), (n=3, =>f^((n))=f'''(x),=-1*2*3x^(-4)), (n=4, =>f^((n))=f''''(x),=+1*2*3*4x^(-5)), (,vdots,vdots) :} #
We can see a clear pattern forming and we can conclude that in the general case we have:
# f^((n)) = (-1)^n n! x^(-(n+1)) # , or# f^((n)) = ((-1)^n n!)/x^(n+1) #