How do you find the ordered pair that is a solution to the system of equations #x + y = 10# and #x - y = 8#?

2 Answers
Jul 17, 2018

Answer:

#x=9,y=1#

Explanation:

Adding both equations we get

#2x=18#
so #x=9#

and we get for #y#

#9+y=10#
#y=1#

Jul 17, 2018

Answer:

#(x,y)to(9,1)#

Explanation:

#x+y=10to(1)#

#x-y=8to(2)#

#"adding the 2 equations term by term eliminates "y#

#x+x)+(y-y)=(10+8)#

#2x=18rArrx=18/2=9#

#"substitute "x=9" into equation "(1)#

#9+y=10rArry=10-9=1#

#"the point of intersection "=(9,1)#
graph{(y+x-10)(y-x+8)((x-9)^2+(y-1)^2-0.04)=0 [-20, 20, -10, 10]}