How do you find the product #(3a^4-b)(3a^4+b)#?

1 Answer
Jan 18, 2017

Answer:

See the entire solution process below:

Explanation:

To multiply these two terms you multiply each individual term in the left parenthesis by each individual term in the right parenthesis.

#(color(red)(3a^4) - color(red)(b))(color(blue)(3a^4) + color(blue)(b))# becomes:

#(color(red)(3a^4) xx color(blue)(3a^4)) + (color(red)(3a^4) xx color(blue)(b)) - (color(red)(b) xx color(blue)(3a^4)) - (color(red)(b) xx color(blue)(b))#

#9a^8 + 3a^4b - 3a^4b - b^2#

We can now combine like terms:

#9a^8 + (3 - 3)a^4b - b^2#

#9a^8 + 0a^4b - b^2#

#9a^8 - b^2#