How do you find the radius of convergence #Sigma 3^nx^(2n)# from #n=[1,oo)#?

1 Answer
Mar 1, 2017

#1/sqrt3#

Explanation:

#sum_(n=1)^oo3^nx^(2n)#

Recall that the series #sum_(n=1)^ooa_n# converges if #lim_(nrarroo)abs(a_(n+1)/a_n)<1# through the ratio test.

We can take #a_n=3^nx^(2n)# and apply the ratio test and find the values of #x# for which the properties of convergence are satisfied (when the absolute value of the ratio is less than #1#).

#lim_(nrarroo)abs(a_(n+1)/a_n)=lim_(nrarroo)abs((3^(n+1)x^(2(n+1)))/(3^nx^(2n)))<1#

#color(white)(lim_(nrarroo)abs(a_(n+1)/a_n)=)lim_(nrarroo)abs((3^(n+1)x^(2n+2))/(3^nx^(2n)))<1#

#color(white)(lim_(nrarroo)abs(a_(n+1)/a_n)=)lim_(nrarroo)abs(3x^2)<1#

#n# is no longer a part of the limit, so we can drop that part. Furthermore, #3x^2>0# for all Real values of #x#, so the absolute value bars are unnecessary.

#color(white)(lim_(nrarroo)abs(a_(n+1)/a_n)=)3x^2-1<0#

#color(white)(lim_(nrarroo)abs(a_(n+1)/a_n)=)(sqrt3x+1)(sqrt3x-1)<0#

This is true on #-1/sqrt3 < x < 1/sqrt3#.

Since this is the interval of convergence (for this problem we don't need to check the bounds), we see that the radius of convergence #R# is #1/sqrt3#.