How do you find the radius of convergence #Sigma (n^nx^n)/(ln(lnn))^n# from #n=[3,oo)#?
1 Answer
The interval of convergence is the single value
Explanation:
#sum_(n=3)^oo(n^nx^n)/(ln(lnn))^n=sum_(n=3)^oo((nx)/ln(lnn))^n#
The root test says that the series
So, we will take
#L=lim_(nrarroo)rootnabs(a_n)=lim_(nrarroo)rootnabs(((nx)/ln(lnn))^n)#
#color(white)L=lim_(nrarroo)abs((nx)/ln(lnn))#
Moving the
#L=absxlim_(nrarroo)abs(n/ln(lnn))#
Since
The only time, then, when
Thus, the interval of convergence is the single value