Evaluate the ratio:
#abs( a_(n+1)/a_n) = abs ( ( x^(n+1)/(5^((n+1)sqrt(n+1))))/(x^n/(5^(nsqrtn))))#
#abs( a_(n+1)/a_n) = abs ( x^(n+1)/x^n)5^(nsqrtn)/(5^((n+1)sqrt(n+1))#
#abs( a_(n+1)/a_n) = abs ( x)5^n/5^(n+1)(5^sqrtn)/(5^(sqrt(n+1))#
#abs( a_(n+1)/a_n) = abs ( x)/5 5^(sqrt(n)-sqrt(n+1))#
Now note that:
#lim_(n->oo) (sqrt(n)-sqrt(n+1)) = lim_(n->oo) (sqrt(n)-sqrt(n+1)) xx (sqrt(n)+sqrt(n+1))/ (sqrt(n)+sqrt(n+1))#
#lim_(n->oo) (sqrt(n)-sqrt(n+1)) = lim_(n->oo) (n-(n+1))/ (sqrt(n)+sqrt(n+1))#
#lim_(n->oo) (sqrt(n)-sqrt(n+1)) = lim_(n->oo) -1/ (sqrt(n)+sqrt(n+1)) = 0#
so that:
#lim_(n->oo) abs( a_(n+1)/a_n) = abs ( x)/5 lim_(n->oo)5^(sqrt(n)-sqrt(n+1)) = abs ( x)/5 xx 5^0 = abs ( x)/5#
Based on the ratio test the series is therefore absolutely convergent for:
#abs ( x)/5 < 1#
and not convergent for #abs ( x)/5 > 1#
So the radius of convergence is #R=5#