How do you find the range of #f(x) =x^2-1# for the domain D={-2,-1,0,2}?

1 Answer
Apr 11, 2017

Answer:

#R={-1,0,3}#

Explanation:

The range is the set of values of #f(x)# you can get from your domain. So given #f(x)=x^2-1# and domain #D={-2,-1,0,2}#, all you have to do is plug in the elements of your domain into your function.

#color(red)(x=-2)#

#[1]" "f(-2)=(-2)^2-1#

#[2]" "f(-2)=4-1#

#[3]" "color(red)(f(-2)=3)#

#color(blue)(x=-1)#

#[1]" "f(-1)=(-1)^2-1#

#[2]" "f(-1)=1-1#

#[3]" "color(blue)(f(-1)=0)#

#color(green)(x=0)#

#[1]" "f(0)=(0)^2-1#

#[2]" "f(0)=0-1#

#[3]" "color(green)(f(0)=-1)#

#color(orange)(x=2)#

#[1]" "f(2)=(2)^2-1#

#[2]" "f(2)=4-1#

#[3]" "color(orange)(f(2)=3)#

Now that you have solved for all the possible values of #f(x)#, your range is:

#R={-1,0,3}#