# How do you find the range of h(x) = x/2 if {-2, -2, 0, 1/2}?

Nov 25, 2017

See a solution process below:

#### Explanation:

Substitute each value in the Domain for $\textcolor{red}{x}$ and calculate $h \left(x\right)$ to find the Range of the function:

For $x = - 2$:

$h \left(\textcolor{red}{x}\right) = \frac{\textcolor{red}{x}}{2}$ becomes:

$h \left(\textcolor{red}{- 2}\right) = \frac{\textcolor{red}{- 2}}{2}$

$h \left(\textcolor{red}{- 2}\right) = - 1$

For $x = - 2 \left(\text{Again?}\right)$:

$h \left(\textcolor{red}{x}\right) = \frac{\textcolor{red}{x}}{2}$ becomes:

$h \left(\textcolor{red}{- 2}\right) = \frac{\textcolor{red}{- 2}}{2}$

$h \left(\textcolor{red}{- 2}\right) = - 1$

For $x = 0$:

$h \left(\textcolor{red}{x}\right) = \frac{\textcolor{red}{x}}{2}$ becomes:

$h \left(\textcolor{red}{0}\right) = \frac{\textcolor{red}{0}}{2}$

$h \left(\textcolor{red}{- 2}\right) = 0$

For $x = \frac{1}{2}$:

$h \left(\textcolor{red}{x}\right) = \frac{\textcolor{red}{x}}{2}$ becomes:

$h \left(\textcolor{red}{0}\right) = \frac{\textcolor{red}{\frac{1}{2}}}{2}$

$h \left(\textcolor{red}{- 2}\right) = \frac{1}{4}$

The Range of the function is: $\left\{- 1 , 0 , \frac{1}{4}\right\}$