How do you find the remainder for #(2x^2+x-6)div(x+2)#?

1 Answer
Jul 28, 2018

Answer:

#(2x^2+x-6)=(x+2)(2x-3)+(0)#

#"Remainder"=0#

Explanation:

Using synthetic division :

#diamond(2x^2+x-6)div(x+2)#

We have , #p(x)=2x^2+x-6 and "divisor :"x=-2#

We take ,coefficients of #p(x) to 2,1, -6#

#-2 |# #2color(white)(.......)1color(white)(..)-6#
#ulcolor(white)(....)|# #ul(0color(white)( ...)-4color(white)(.......)6#
#color(white)(......)2color(white)(...)-3color(white)(.......)color(violet)(ul|0|#
We can see that , quotient polynomial :

#q(x)=2x-3 and"the Remainder"=0#

Hence ,

#(2x^2+x-6)=(x+2)(2x-3)+(0)#
...............................................................................................