How do you find the roots, real and imaginary, of y=-(x -2)^2-4x+5 using the quadratic formula?

1 Answer
Nov 25, 2017

the answers are y=+-1

Explanation:

the given equation is y=-(x-2)^2-4x+5rArry=-x^2-4+4x-4x+5rArry=-x^2+1 on applying the quadratic formula color(red)[y=(-b+-sqrt(b^2-4ac))/(2a)] here a=-1,b=0,c=1 on substituting the values we get (0+-sqrt(0-4(-1)(1)))/(2(1))rArr(+-sqrt(4)/(2))rArr+-2/2rArr+-1
:. y=+-1