How do you find the roots, real and imaginary, of #y= (x-2)^2+(x-4)^2 # using the quadratic formula?
1 Answer
Mar 3, 2016
Multiply out and simplify to find a quadratic in standard form, then apply the formula to find zeros
Explanation:
#y=(x-2)^2+(x-4)^2#
#=(x^2-4x+4)+(x^2-8x+16)#
#=2x^2-12x+20#
#=2(x^2-6x+10)#
This has zeros given by the quadratic formula:
#x = (-b+-sqrt(b^2-4ac))/(2a)#
#=(6+-sqrt((-6)^2-(4*1*10)))/(2*1)#
#=(6+-sqrt(36-40))/2#
#=(6+-sqrt(-4))/2#
#=(6+-sqrt(4)i)/2#
#=(6+-2i)/2#
#=3+-i#