How do you find the roots, real and imaginary, of #y= x^2-6x+(x-4)^2 # using the quadratic formula?
1 Answer
real roots:
imaginary roorts: none
Explanation:
#y=x^2-6x+(x-4)^2#
#y=x^2-6x+(color(crimson)x# #color(blue)(-4))(color(orange)x# #color(teal)(-4))#
#y=x^2-6x+(color(crimson)x(color(orange)x)# #color(crimson)(+x)(color(teal)(-4))# #color(blue)(-4)(color(orange)x)# #color(blue)(-4)(color(teal)(-4)))#
#y=x^2-6x+(x^2-4x-4x+16)#
#y=x^2-6x+(x^2-8x+16)#
#y=x^2+x^2-6x-8x+16#
#y=color(brown)2x^2# #color(turquoise)(-14)x# #color(violet)(+16)#
#color(brown)(a=2)color(white)(XXXXX)color(turquoise)(b=-14)color(white)(XXXXX)color(violet)(c=16)#
#x=(-b+-sqrt(b^2-4ac))/(2a)#
#x=(-(color(turquoise)(-14))+-sqrt((color(turquoise)(-14))^2-4(color(brown)2)(color(violet)(16))))/(2(color(brown)2))#
#x=(14+-sqrt(196-128))/4#
#x=(14+-sqrt(68))/4#
#x=(14+-2sqrt(17))/4#
#x=(2(7+-sqrt(17)))/(2(2))#
#x=(color(red)cancelcolor(black)2(7+-sqrt(17)))/(color(red)cancelcolor(black)2(2))#
#color(green)(|bar(ul(color(white)(a/a)x=(7+-sqrt(17))/2color(white)(a/a)|)))#