How do you find the second-degree Taylor polynomial #T_2(x)# for the function #f(x) = sqrt(3+x^2)# at the number x=1?
1 Answer
Explanation:
A complete Taylor polynomial for the function
#T(x)=sum_(n=0)^oo(f^((n))(c))/(n!)(x-c)^n#
So the second degree Taylor polynomial will be the sum of the terms
#T_2(x)=(f^((0))(c))/(0!)(x-c)^0+(f^((1))(c))/(1!)(x-c)^1+(f^((2))(c))/(2!)(x-c)^2" "#
#T_2(x)=f(1)+f'(1)(x-1)+(f''(1))/2(x-1)^2" "" "color(red)star#
We see that:
#f(1)=sqrt(3+1)=2#
And:
#f'(x)=1/2(3+x^2)^(-1/2)(2x)=x/sqrt(3+x^2)#
#f'(1)=1/sqrt(3+1)=1/2#
Finding
#f''(x)=(3+x^2)^(-1/2)+x(-1/2(3+x^2)^(-3/2))(2x)#
#f''(x)=(3+x^2)^(-1/2)-x^2(3+x^2)^(-3/2)#
#f''(x)=3/(3+x^2)^(3/2)#
#f''(1)=3/(1+3)^(3/2)=3/8#
Returning to
#T_2(x)=2+1/2(x-1)+3/16(x-1)^2#