How do you find the second derivative of #f(t)=tsqrtt#?

2 Answers
Jun 21, 2017

#(d^2f)/(dt^2)=3/(4sqrtt)#

Explanation:

As #tsqrtt# can be written as #f(t)=tsqrtt=txxt^(1/2)=t^(3/2)#, we can use the formula #d/(dx) x^n=nx^(n-1)#

Hence #(df)/(dt)=3/2xxt^(3/2-1)=3/2t^(1/2)=3/2sqrtt#

and #(d^2f)/(dt^2)=3/2xx1/2xxt^(1/2-1)=3/4t^(-1/2)=3/(4sqrtt)#

Jun 21, 2017

#f''(t)=3/(4sqrtt)#

Explanation:

#f(t)=tsqrtt=txxt^(1/2)=t^(3/2)#

#"differentiate using the "color(blue)"power rule"#

#• d/dx(ax^n)=nax^(n-1)#

#rArrf'(t)=3/2t^(1/2)#

#rArrf''(t)=3/2xx1/2t^(-1/2)#

#color(white)(rArrf''(t))=3/4xx1/t^(1/2)=3/(4sqrtt)#