# How do you find the slope for (0,-7) (0,-12)?

May 31, 2018

Slope is Undefined

#### Explanation:

Recall;

$y = m x + c$

Where;

$m = \text{slope}$

Also;

$\text{slope} = m = \frac{{y}_{2} - {y}_{1}}{{x}_{2} - {x}_{1}}$

Points given: $\left({0}_{{x}_{1}} , - {7}_{{y}_{1}}\right) , \left({0}_{{x}_{2}} , - {12}_{{y}_{2}}\right)$

Where;

${y}_{2} = - 12$

${y}_{1} = - 7$

${x}_{2} = 0$

${x}_{1} = 0$

Therefore;

$m = \frac{{y}_{2} - {y}_{1}}{{x}_{2} - {x}_{1}}$

$m = \frac{- 12 - \left(- 7\right)}{0 - 0}$

$m = \frac{- 12 + 7}{0}$

$m = - \frac{5}{0}$

Since the slope can not be zero, it means that the slope is Undefined

May 31, 2018

$\text{slope is undefined}$

#### Explanation:

$\text{calculate the slope m using the "color(blue)"gradient formula}$

•color(white)(x)m=(y_2-y_2)/(x_2-x_1)

$\text{let "(x_1,y_1)=(0,-7)" and } \left({x}_{2} , {y}_{2}\right) = \left(0 , - 12\right)$

$m = \frac{- 12 - \left(- 7\right)}{0 - 0} = \frac{19}{0}$

$\text{division by zero is undefined hence slope is undefined}$