How do you find the value of #sin -((5pi)/12)# using the double or half angle formula?

1 Answer
Oct 25, 2016

#sqrt(2 + sqrt3)/2#

Explanation:

Unit circle and property of complementary arcs -->
#sin ((-5pi)/12) = sin (pi/12 - (6pi)/12) = sin (pi/12 - pi/2) = cos (pi/12)#
Evaluate #cos (pi/12)#, knowing #cos ((2pi)/12) = cos (pi/6) = sqrt3/2#
Use trig identity
#2cos^2 a = 1 + cos 2a#
#2cos^2 (pi/12) = 1 + cos (pi/6) = 1 + sqt3/2 = (2 + sqrt3)/2#
#cos^2 (pi/12) = (2 + sqrt3)/4#
#cos (pi/12) = +- sqrt(2 + sqrt3)/2#
Since #cos ((pi/12)# is positive, then only the positive value is accepted.
Finally:
#sin ((-5pi)/12) = cos (pi/12) = sqrt(2 + sqrt3)/2#