How do you find the vertex and the intercepts for #y=-4x^2+8x+13#?

1 Answer
Mar 17, 2017

#color(green)(y_("intercept")->(x,y)=(0,13))#

#color(blue)(x_("intercept")~~ 3.062" and "~~-1.062 larr" to 3 decimal places")#
#color(blue)(x_("intercept") =1+-sqrt(17)/2 larr" exact answer")#

#color(magenta)("Vertex"->(x,y)=(1,17))#

Explanation:

Given:#" "y=-4x^2+8x+13#

#color(blue)("Determine the general shape of the curve")#

The coefficient of #x^2# is negative. Consequently the graph is pf form #nn#. Thus the vertex is a maximum

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Determining y-intercept")#

Reading directly off the equation the y-intercept is +13
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Determining the vertex")#

Write as #-4(x^2-8/4x)+13#

#x_("vertex")=(-1/2)xx(-8/4) = +1#

By substitution: #" "y_("vertex")=-4(1)^2+8(1)+13 = 17#

Vertex#->(x,y)=(1,17)#

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Determining x-intercept")#

The vertex is above the x-axis so as the general form is #nn# x-intercepts exist.

Compare to the standardised form #y=ax^2bx+c#

Where #x=(-b+-sqrt(b^2-4ac))/(2a)#

#a=-4"; "b=8"; "c=13# giving:

#x=(-8+-sqrt(8^2-4(-4)(13)))/(2(-4))#

#x=(-8+-sqrt(272))/(-8)#

#x=1+-(sqrt(2^2xx2^2xx17))/(-8)#

#x=1+-(4sqrt(17))/-8" " ->" " 1+-sqrt(17)/2 larr" exact answer"#

You may write #4/(-8) # as #1/2# as its sign does not matter due to the #+- # preceding that part of the equation.

#x~~ 3.062" "x~~-1.062#

Tony B