How do you find the vertex of #g(x)= 5/7x^2+ 13/21x + 1/3#?

1 Answer
May 4, 2016

#color(blue)("Vertex "->(x,y)->(-13/30,+251/1260)" Exactly"#

#color(blue)("Vertex "->(x,y)->(-0.43bar3, 0.199)" Approximately"#

Explanation:

#color(blue)("Determine "x_("vertex"))#

Write as #" "y=5/7[x^2+(13/21-:5/7)x] + 1/3#

#y= 5/7(x^2+13/15x)+1/3#

#color(blue)(x_("vertex")=(-1/2)xx13/15 = -13/30)#

'.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~.
#color(blue)("Determine "y_("vertex"))#

Substitute for #x# in the original equation

#y_("vertex")=5/7(-13/30)^2+13/21(-13/30)+1/3#

#y_("vertex") = (5/7xx160/900)-(13/21xx13/30)+1/3#

#y_("vertex")=169/1260-169/630+1/3#

#color(blue)(y_("vertex")=251/1260 ~~0.1992)#
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

#color(blue)("Vertex "->(x,y)->(-13/30,+251/1260)" Exactly"#
#color(red)("Thank goodness for calculators!")#

#color(blue)("Vertex "->(x,y)->(-0.43bar3, 0.199)" Approximately"#

Tony B