How do you find the vertical, horizontal and slant asymptotes of: #f(x)= (4x^2+ 4x-24)/(x^4- 2x^3 - 9x^2+ 18x)#?
1 Answer
Explanation:
The numerator factors like this:
#4x^2+4x-24 = 4(x^2+x-6) = 4(x+3)(x-2)#
The denominator factors like this:
#x^4-2x^3-9x^2+18x#
#= x((x^3-2x^2)-(9x-18))#
#= x(x^2(x-2)-9(x-2))#
#= x(x^2-9)(x-2)#
#= x(x-3)(x+3)(x-2)#
Note the common factors
#f(x) = (4x^2+4x-24)/(x^4-2x^3-9x^2+18x)#
#= (4color(red)(cancel(color(black)((x+3))))color(red)(cancel(color(black)((x-2)))))/(x(x-3)color(red)(cancel(color(black)((x+3))))color(red)(cancel(color(black)((x-2)))))#
#= (4)/(x(x-3))#
So when
As
graph{(4x^2+4x-24)/(x^4-2x^3-9x^2+18x) [-10, 10, -5, 5]}