How do you find the x and y intercepts of 3x-7y+20=0?

x-intercept: $= a = - \frac{20}{3}$

y-intercept: $= b = \frac{20}{7}$

Explanation:

Given equation of straight line:

$3 x - 7 y + 20 = 0$

$3 x - 7 y = - 20$

$\setminus \frac{3 x}{- 20} + \setminus \frac{- 7 y}{- 20} = 1$

$\setminus \frac{x}{- \frac{20}{3}} + \setminus \frac{y}{\frac{20}{7}} = 1$

Comparing the above equation with the intercept form of the straight line: $\frac{x}{a} + \frac{y}{b} = 1$ we get

x-intercept: $= a = - \frac{20}{3}$

y-intercept: $= b = \frac{20}{7}$

Jul 10, 2018

$\text{x-intercept "=-20/3," y-intercept } = \frac{20}{7}$

Explanation:

$\text{to find the intercepts, that is where the graph crosses}$
$\text{the x and y axes}$

• " let x = 0, in the equation for y-intercept"

• " let y = 0, in the equation for x-intercept"

$x = 0 \Rightarrow - 7 y = - 20 \Rightarrow y = \frac{20}{7} \leftarrow \textcolor{red}{\text{y-intercept}}$

$y = 0 \Rightarrow 3 x = - 20 \Rightarrow x = - \frac{20}{3} \leftarrow \textcolor{red}{\text{x-intercept}}$