How do you find the x and y intercepts of #y=2x-3#?

1 Answer
Jul 7, 2017

Answer:

#x#-intercept #= 1.5#, #y#-intercept #=-3#

Explanation:

To find an #x#-intercept, find where the graph of #y=2x-3# intercepts the #x#-axis. When a graph intercepts the #x#-axis, #y=0#, so you can substitute #0# for #y#.

#y=2x-3#
#0=2x-3#
#3=2x#
#x=1.5#

Similarly, you can find the #y#-intercept by determining where the graph intercepts the #y#-axis. At this point #x=0#, so substitute #0# for #x#.

#y=2x-3#
#y=2(0)-3#
#y=0-3#
#y=-3#

The #x#-intercept is #1.5#, and the #y#-intercept is #-3#.

You can verify this by graphing the function:
graph{2x-3 [-10, 10, -5, 5]}