How do you find the zeros of # 4x^4 + 3x^3 + 2x^2 - 3x + 4#?
1 Answer
See explanation...
Explanation:
This is an interesting question due to the form of the quartic.
First note the symmetry/anti-symmetry of the coefficients. This results in the property that if
Let
Then:
#r^4 f(-1/r) = r^4 (4r^(-4)-3r^(-3)+2r^(-2)+3r^(-1)+4)#
#= 4-3r+2r^2+3r^3+4r^4 = f(r)#
Taking such a pair of zeros, we find:
#(x-r)(x+1/r) = x^2+(1/r-r)x-1#
So
#4x^4+3x^3+2x^2-3x+4#
#=4(x^2+(1/r_1-r_1)x-1)(x^2+(1/r_2-r_2)x-1)#
#=(2x^2+2(1/r_1-r_1)x-2)(2x^2+2(1/r_2-r_2)x-2)#
Therefore consider:
#4x^4+3x^3+2x^2-3x+4#
#= (2x^2+ax-2)(2x^2+bx-2)#
#= 4x^4+2(a+b)x^3+(ab-8)x^2-2(a+b)x+4#
Equating coefficients we find:
#2(a+b) = 3#
#ab = 10#
Hence (to cut a long story a little shorter) we can find:
#a=3/4+sqrt(151)/4i#
#b=3/4-sqrt(151)/4i#
So the zeros of
#2x^2+(3/4+sqrt(151)/4i)x-2 = 0#
#2x^2+(3/4-sqrt(151)/4i)x-2 = 0#
Using the quadratic formula to find the roots, we obtain formulae including the square root of a Complex number.
#x = 1/16(-3-sqrt(151)i+-sqrt(114+6sqrt(151)i))#
#x = 1/16(-3+sqrt(151)i+-sqrt(114-6sqrt(151)i))#
To convert these to
The square roots of
#+-((sqrt((sqrt(c^2+d^2)+c)/2)) + (d/abs(d) sqrt((sqrt(c^2+d^2)-c)/2))i)#
Hence (using principal square root based on
#sqrt(114+6sqrt(151)i) = sqrt(48sqrt(2)+57) + (sqrt(48sqrt(2)-57))i#
#sqrt(114-6sqrt(151)i) = sqrt(48sqrt(2)+57) - (sqrt(48sqrt(2)-57))i#