To find the zeros of a quadratic equation you set the quadratic equal to #0#:
#0 = -2x^2 - 19x + 42#
We can now use the quadratic equation to solve this problem:
The quadratic formula states:
For #color(red)(a)x^2 + color(blue)(b)x + color(green)(c) = 0#, the values of #x# which are the solutions to the equation are given by:
#x = (-color(blue)(b) +- sqrt(color(blue)(b)^2 - (4color(red)(a)color(green)(c))))/(2 * color(red)(a))#
Substituting:
#color(red)(-2)# for #color(red)(a)#
#color(blue)(-19)# for #color(blue)(b)#
#color(green)(42)# for #color(green)(c)# gives:
#x = (-color(blue)((-19)) +- sqrt(color(blue)((-19))^2 - (4 * color(red)(-2) * color(green)(42))))/(2 * color(red)(-2))#
#x = (color(blue)(19) +- sqrt(361 - (-336)))/-4#
#x = (color(blue)(19) +- sqrt(361 + 336))/-4#
#x = (color(blue)(19) +- sqrt(697))/-4#
#x = -(color(blue)(19) +- sqrt(697))/4#