The quadratic formula states:
For #color(red)(a)x^2 + color(blue)(b)x + color(green)(c) = 0#, the values of #x# which are the solutions to the equation are given by:
#x = (-color(blue)(b) +- sqrt(color(blue)(b)^2 - (4color(red)(a)color(green)(c))))/(2 * color(red)(a))#
Substituting:
#color(red)(9)# for #color(red)(a)#
#color(blue)(-8)# for #color(blue)(b)#
#color(green)(-4)# for #color(green)(c)# gives:
#x = (-color(blue)((-8)) +- sqrt(color(blue)((-8))^2 - (4 * color(red)(9) * color(green)(-4))))/(2 * color(red)(9))#
#x = (8 +- sqrt(64 - (-144)))/18#
#x = (8 +- sqrt(64 + (144)))/18#
#x = (8 +- sqrt(208))/18#
#x = (8 +- sqrt(16 * 13))/18#
#x = (8 +- sqrt(16)sqrt(13))/18#
#x = (8 +- 4sqrt(13))/18#
#x = (8 - 4sqrt(13))/18# and #x = (8 + 4sqrt(13))/18#
#x = (4 - 2sqrt(13))/9# and #x = (4 + 2sqrt(13))/9#