How do you graph #72\geq - 3x - 6y#?

1 Answer
May 22, 2017

See the process in the explanation.

Explanation:

Rearrange the equation into slope intercept form.

#72>= -3x-6y#

Add #6y# to both sides.

#6y+72>=-3xcolor(red)cancel(color(black)(-6y))color(red)cancel(color(black)(+6y)#

Simplify.

#6y+72>=-3x#

Subtract #72# from both sides.

#6ycolor(red)cancel(color(black)(+72))color(red)cancel(color(black)(-72))>=-3x-72#

Simplify.

#6y>=-3x-72#

Divide both sides by #6#.

#y>=-3/6x-12#

Simplify.

#y>=-1/2x-12# #lArr# Slope intercept form

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Determine points for #y>=-1/2x-12#

#x=0,##y=-12#
#x=2,##y=-13#
#x=4,##y=-14#
#x=6,##y=-15#

Plot the points and draw a straight, solid line through the points. Shade the above the line. graph{y>=-1/2x-12 [-13.96, 18.08, -20.63, -4.61]}