How do you graph and label the vertex and axis of symmetry #y=2x^2+4x-3#?

1 Answer
Nov 14, 2017

#A=(0,-3)#
#B=(0.58,0)#
#C=(-2.58,0)#

#(-1,-5)min#

Explanation:

#y=2x^2+4x-3#

(#y=a*x^2+b*x+c#
# => a=2 , b=4 , c=-3#)

when #x=0 => y=0+0-3=-3#

when #y=0 => 2x^2+4x-3=0#

(We use: #(-b+-sqrt(b^2-4*a*c))/(2*a)#)

#x_(1,2)=(-4+-sqrt(16-4*2*(-3)))/(2*2)#
#= (-4+-sqrt(16+24))/(4)#
#= (-4+-sqrt(40))/(4)#
#(sqrt(40)=sqrt(4*10)=sqrt(4)*sqrt(10)=2*sqrt(10))#
#= (-4+-2*sqrt(10))/(4)#
#=>#
#x_1=(-4+2*sqrt(10))/(4)=(2(-2+*sqrt(10)))/(4)=(-2+sqrt(10))/(2)~~0.58#
#x_2=(-4-2*sqrt(10))/(4)=(2(-2-*sqrt(10)))/(4)=(-2+sqrt(10))/(2)~~-2.58#

We know now:
#A=(0,-3)#
#B=(0.58,0)#
#C=(-2.58,0)#


#y=2x^2+4x-3#

(#y=a*x^2+b*x+c#
# => y'=2a*x+b#)

#y'=2*2*x+4=4x+4#

#y'=0 => 4x+4=0#
#=> 4x=-4#
#=> x=-1#

#x=-1 => y=2*(-1)^2+4*(-1)-3=2-4-3=-5#

#a>0# ("smile")
#=> (-1,-5)min#


graph:

graph{2x^2+4x-3 [-10, 10, -6, 5]}