How do you graph and label the vertex and axis of symmetry #y=-4/3x^2+8/3x+8/3#?

1 Answer
Mar 19, 2017

The vertex form is #y=-4/3(x-1)^2+4#

Explanation:

We use

#a^2-2ab+b^2=(a-b)^2#

We complete the square and factorise in order to find the vertex form

#y=-4/3x^2+8/3x+8/3#

#y=-4/3(x^2-2x)+8/3#

#y=-4/3(x^2-2x+1)+8/3+4/3#

#y=-4/3(x-1)^2+12/3#

#y=-4/3(x-1)^2+4#

This is a parabola with vertex at #V=(1,4)#

The axis of symmetry is #x=1#

The intercept with the y-axis is #=(0,8/3)#

The intercepts with the x-axis is when #y=0#

#0=-4/3(x-1)^2+4#

#4/3(x-1)^2=4#

#(x-1)^2=3#

#x-1=+-sqrt3#

#x=1+-sqrt3#

The intercepts are #(1+sqrt3,0)# and #(1-sqrt3,0)#

Now, we can draw the graph

graph{(y+4/3(x-1)^2-4)((x-1)^2+(y-4)^2-0.02)(y-1000(x-1))=0 [-11.25, 11.25, -5.625, 5.625]}