How do you graph #f(x)= -(x+4)^2 + 9#?

1 Answer
Apr 8, 2017

see explanation.

Explanation:

The following points are necessary.

#• " coordinates of vertex"#

#• " x and y intercepts"#

#• " shape of parabola. That is max / min"#

The equation of a parabola in #color(blue)"vertex form"# is.

#color(red)(bar(ul(|color(white)(2/2)color(black)(y=a(x-h)^2+k)color(white)(2/2)|)))#
where (h ,k) are the coordinates of the vertex and a is a constant.

#f(x)=-(x+4)^2+9" is in this form"#

#"with " a=-1, h=-4" and " k=9#

#rArrcolor(magenta)"vertex "=(-4,9)#

#"since " a<0" then max turning point " nnn#

#color(blue)"intercepts"#

#x=0toy=-16+9=-7larrcolor(red)" y-intercept"#

#y=0to-(x+4)^2+9=0#

#rArr(x+4)^2=9#

#rArrx+4=+-3#

#rArrx=-1" or " x=-7larrcolor(red)"x-intercepts"#
graph{-(x+4)^2+9 [-20, 20, -9.98, 10.02]}