How do you graph #f(x)= -(x+4)^2 + 9#?
1 Answer
Apr 8, 2017
see explanation.
Explanation:
The following points are necessary.
#• " coordinates of vertex"#
#• " x and y intercepts"#
#• " shape of parabola. That is max / min"# The equation of a parabola in
#color(blue)"vertex form"# is.
#color(red)(bar(ul(|color(white)(2/2)color(black)(y=a(x-h)^2+k)color(white)(2/2)|)))#
where (h ,k) are the coordinates of the vertex and a is a constant.
#f(x)=-(x+4)^2+9" is in this form"#
#"with " a=-1, h=-4" and " k=9#
#rArrcolor(magenta)"vertex "=(-4,9)#
#"since " a<0" then max turning point " nnn#
#color(blue)"intercepts"#
#x=0toy=-16+9=-7larrcolor(red)" y-intercept"#
#y=0to-(x+4)^2+9=0#
#rArr(x+4)^2=9#
#rArrx+4=+-3#
#rArrx=-1" or " x=-7larrcolor(red)"x-intercepts"#
graph{-(x+4)^2+9 [-20, 20, -9.98, 10.02]}