How do you graph # tan(x/2)#?

1 Answer
Mar 19, 2018

Assuming you know what a tan function looks like, then we know that #y=f(x)#, #f(x)=tanx#

When #y=f(x/a)#, the function is squished along the #x#-axis by #a#. So, #a=# represents all the #x#-values being doubled. So if for a function #f(x)#, #f(2)=5# and #f(4)=12, with #f(x/2)# - #f(4)=5#

So, #y=tan(x/2)# would be #y=tanx# but each value of #x# would be doubled.

#y=tanx#:
graph{tanx [-10, 10, -5, 5]}

#y=tan(x/2)#:
graph{tan(x/2) [-10, 10, -5, 5]}