# ECE 476 Power System Analysis Lecture 15 Power

- Slides: 33

ECE 476 Power System Analysis Lecture 15: Power Flow Prof. Tom Overbye Dept. of Electrical and Computer Engineering University of Illinois at Urbana-Champaign overbye@illinois. edu

Announcements • Please read Chapter 6 • HW 6 is 6. 9, 6. 18, 6. 34, 6. 38, 6. 48, 6. 53; this one must be turned in on Oct 20 (hence there will be no quiz that day); (there is no HW due on Oct 12 and no quiz) 1

Voltage Regulation Example: 37 Buses Display shows voltage contour of the power system, demo will show the impact of generator voltage set point, reactive power limits, and switched capacitors 2

Solving Large Power Systems • The most difficult computational task is inverting the Jacobian matrix – – inverting a full matrix is an order n 3 operation, meaning the amount of computation increases with the cube of the size this amount of computation can be decreased substantially by recognizing that since the Ybus is a sparse matrix, the Jacobian is also a sparse matrix using sparse matrix methods results in a computational order of about n 1. 5. this is a substantial savings when solving systems with tens of thousands of buses 3

Newton-Raphson Power Flow • Advantages – – fast convergence as long as initial guess is close to solution large region of convergence • Disadvantages – – each iteration takes much longer than a Gauss-Seidel iteration more complicated to code, particularly when implementing sparse matrix algorithms • Newton-Raphson algorithm is very common in power flow analysis 4

Modeling Voltage Dependent Load 5

Voltage Dependent Load Example 6

Voltage Dependent Load, cont'd 7

Voltage Dependent Load, cont'd With constant impedance load the MW/Mvar load at bus 2 varies with the square of the bus 2 voltage magnitude. This if the voltage level is less than 1. 0, the load is lower than 200/100 MW/Mvar 8

Dishonest Newton-Raphson • Since most of the time in the Newton-Raphson iteration is spend calculating the inverse of the Jacobian, one way to speed up the iterations is to only calculate/inverse the Jacobian occasionally – – known as the “Dishonest” Newton-Raphson an extreme example is to only calculate the Jacobian for the first iteration 9

Dishonest Newton-Raphson Example 10

Dishonest N-R Example, cont’d We pay a price in increased iterations, but with decreased computation per iteration 11

Two Bus Dishonest ROC Slide shows the region of convergence for different initial guesses for the 2 bus case using the Dishonest N-R Red region converges to the high voltage solution, while the yellow region converges to the low voltage solution 12

Honest N-R Region of Convergence Maximum of 15 iterations 13

Decoupled Power Flow • The completely Dishonest Newton-Raphson is not used for power flow analysis. However several approximations of the Jacobian matrix are used. • One common method is the decoupled power flow. In this approach approximations are used to decouple the real and reactive power equations. 14

Decoupled Power Flow Formulation 15

Decoupling Approximation 16

Off-diagonal Jacobian Terms 17

Decoupled N-R Region of Convergence 18

Fast Decoupled Power Flow • By continuing with our Jacobian approximations we can actually obtain a reasonable approximation that is independent of the voltage magnitudes/angles. • This means the Jacobian need only be built/inverted once. • This approach is known as the fast decoupled power flow (FDPF) • FDPF uses the same mismatch equations as standard power flow so it should have same solution • The FDPF is widely used, particularly when we only need an approximate solution 19

FDPF Approximations 20

FDPF Three Bus Example Use the FDPF to solve the following three bus system 21

FDPF Three Bus Example, cont’d 22

FDPF Three Bus Example, cont’d 23

FDPF Region of Convergence 24

“DC” Power Flow • The “DC” power flow makes the most severe approximations: – completely ignore reactive power, assume all the voltages are always 1. 0 per unit, ignore line conductance • This makes the power flow a linear set of equations, which can be solved directly 25

DC Power Flow Example 26

DC Power Flow 5 Bus Example Notice with the dc power flow all of the voltage magnitudes are 1 per unit. 27

Power System Control • A major problem with power system operation is the limited capacity of the transmission system – – – lines/transformers have limits (usually thermal) no direct way of controlling flow down a transmission line (e. g. , there are no valves to close to limit flow) open transmission system access associated with industry restructuring is stressing the system in new ways • We need to indirectly control transmission line flow by changing the generator outputs • Similar control issues with voltage 28

Extreme Control Example: 42 Bus Tornado Scenario

Indirect Transmission Line Control What we would like to determine is how a change in generation at bus k affects the power flow on a line from bus i to bus j. The assumption is that the change in generation is absorbed by the slack bus 30

Power Flow Simulation - Before • One way to determine the impact of a generator change is to compare a before/after power flow. • For example below is a three bus case with an overload 31

Power Flow Simulation - After Increasing the generation at bus 3 by 95 MW (and hence decreasing it at bus 1 by a corresponding amount), results in a 31. 3 drop in the MW flow on the line from bus 1 to 2. 32

- Symmetrical components in power system pdf
- Ece 476
- Power systems
- Tom overbye
- Ece 476
- Ece 476
- Ece 476
- Ece 476
- Ece 476
- Ece 476
- Zline 667-36
- 01:640:244 lecture notes - lecture 15: plat, idah, farad
- Power system dynamics and stability lecture notes
- Power system dynamics and stability lecture notes
- 500 - 476
- Cs 476
- Rounding key words
- 476 a 1453
- 476 a 1453
- 476-1492
- 476 a 1453
- That "rome fell in a.d. 476" means
- 12 tables of roman law
- 476 fighter group
- Bistogram cikajang
- 476 bus times
- Dhol pdf
- Ie 753
- Ntp 476
- I.sz. 476
- Rome 476 ce
- Power traiangle
- Power semiconductor devices lecture notes
- Switch mode power supply lecture notes