How do you graph the parabola #y=2x^2 - 18x +13# using vertex, intercepts?

1 Answer
Jul 8, 2018

vertex #(9/2, -55/2)#

y-intercept #(0, 13)#

Explanation:

Given: #f(x) = y = 2x^2 - 18x + 13#

Find the vertex:

With the equation in the form: #Ax^2 + Bx + C = 0#

vertex #(-B/(2A), f(-B/(2A)))#

#x = 18/(2*2) = 18/4 = 9/2#

#f(9/2) = 2*(9/2)^2 - 18(9/2) + 13#

#f(9/2) = 2 * 81/4 - 81 + 13#

#f(9/2) = 81/2 -68/1 * 2/2#

#f(9/2) = 81/2 - 136/2#

#f(9/2) = -55/2#

#color(blue)("vertex "(9/2, -55/2))#

Find the y-intercept by setting x = 0:

#y = 2*0^2 - 18*0 + 13 = 13#

#color (red)(y"-intercept "(0, 13))#

Find the x-intercepts by setting y = 0:

#2x^2 - 18x + 13 = 0#

Use the quadratic formula to solve since this quadratic isn't easy to factor:

#x = (-B+-sqrt(B^2 - 4AC))/(2A)#

#x = (18+-sqrt(18^2 - 4*2*13))/(2*2)#

#x = 18/4 +- sqrt(220)/4 = 9/2 +- (sqrt(4)sqrt(55))/4#

#x = 9/2 +- sqrt(55)/2#

#color (red)(x"-intercepts "(9/2 + sqrt(55)/2, 0), (9/2 - sqrt(55)/2, 0))#

graph{2x^2 - 18x + 13 [-5, 10, -30, 15]}